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Sustained Perceptual Deficits from Transient Sensory
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Sensory pathways display heightened plasticity during development, yet the perceptual consequences of early experience are generally
assessed in adulthood. This approach does not allow one to identify transient perceptual changes that may be linked to the central
plasticity observed in juvenile animals. Here, we determined whether a brief period of bilateral auditory deprivation affects sound
perception in developing and adult gerbils. Animals were reared with bilateral earplugs, either from postnatal day 11 (P11) to postnatal
day 23 (P23) (a manipulation previously found to disrupt gerbil cortical properties), or from P23-P35. Fifteen days after earplug removal
and restoration of normal thresholds, animals were tested on their ability to detect the presence of amplitude modulation (AM), a
temporal cue that supports vocal communication. Animals reared with earplugs from P11-P23 displayed elevated AM detection thresh-
olds, compared with age-matched controls. In contrast, an identical period of earplug rearing at a later age (P23-P35) did not impair
auditory perception. Although the AM thresholds of earplug-reared juveniles improved during a week of repeated testing, a subset of
juveniles continued to display a perceptual deficit. Furthermore, although the perceptual deficits induced by transient earplug rearing
had resolved for most animals by adulthood, a subset of adults displayed impaired performance. Control experiments indicated that
earplugging did not disrupt the integrity of the auditory periphery. Together, our results suggest that P11-P23 encompasses a critical
period during which sensory deprivation disrupts central mechanisms that support auditory perceptual skills.
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Introduction
Inadequate or abnormal sensory experience rapidly alters CNS
structure and function, with the most profound effects arising from
manipulations that occur during developmental critical periods (Es-

pinosa and Stryker, 2012; for review, see Erzurumlu and Gaspar,
2012; Kral et al., 2013). In the auditory system, the effects of early
experience are generally assessed in adults, long after the sensory
manipulation occurs. However, rapid hearing-dependent changes
to neural function may undermine juvenile perceptual skills, yet
resolve during maturation, leaving the false impression that depri-
vation caused little or no harm to behavior. In contrast, a develop-
mental evaluation can reveal whether juvenile auditory deficits
occur, and whether they resolve with additional time or practice.
Therefore, we explored whether a brief period of auditory attenua-
tion, which has been shown to profoundly alter cortical cellular and
synaptic properties (Mowery et al., 2014), also induces deficits in
juvenile auditory perception that outlast the period of deprivation.

Transient elevation of auditory thresholds are a significant
concern for children. For example, children with a history of
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Significance Statement

Sensory systems are particularly malleable during development. This heightened degree of plasticity is beneficial because it
enables the acquisition of complex skills, such as music or language. However, this plasticity comes with a cost: nervous system
development displays an increased vulnerability to the sensory environment. Here, we identify a precise developmental window
during which mild hearing loss affects the maturation of an auditory perceptual cue that is known to support animal communi-
cation, including human speech. Furthermore, animals reared with transient hearing loss display deficits in perceptual learning.
Our results suggest that speech and language delays associated with transient or permanent childhood hearing loss may be
accounted for, in part, by deficits in central auditory processing mechanisms.
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middle ear infections display auditory processing impairments,
even if their peripheral sensitivity is normal at the time of testing
(Moore et al., 1991; Pillsbury et al., 1991; Gravel and Wallace,
1992; Hogan and Moore, 2003; Tomlin and Rance, 2014). Simi-
larly, children born with conductive hearing loss have difficulty
understanding speech in noise well after corrective surgery (Wil-
mington et al., 1994). Although the majority of these perceptual
deficits resolve by adulthood (Jerger and Johnson, 1988; Hall et
al., 1995, 1998, 2003; Moore et al., 1996; Gravel et al., 2006), they
increase the risk for long-term reading and writing difficulties
(Gravel et al., 1996; Catts et al., 1999; Johnson et al., 1999) and
behavioral problems (Brinton and Fujiki, 1993; Gertner et al.,
1994; Beitchman et al., 1996). Thus, the long-term effects of tran-
sient hearing loss are significant and suggest that CNS dysfunc-
tion is a major contributing factor.

Transient auditory deprivation during development can de-
grade sound encoding and is closely associated with diminished
perceptual skills. For example, temporary unilateral deprivation
causes binaural encoding deficits that can account for behavioral
impairments in sound localization and other binaural tasks (Cle-
ments and Kelly, 1978; Moore and Irvine, 1981; Knudsen et al.,
1984b; Knudsen, 1985; Mogdans and Knudsen, 1992, 1993, 1994;
Moore et al., 1999; Popescu and Polley, 2010; Keating et al., 2013,
2015; Polley et al., 2013). In addition, the clinical literature sug-
gests that hearing loss can disrupt mechanisms associated with
cognitive processing (Uhlmann et al., 1989; Arlinger, 2003; Lin et
al., 2013). To address these issues, we asked whether a brief period
of bilateral auditory deprivation affected sound perception and
perceptual learning. Gerbils were assessed for their ability to de-
tect amplitude modulation (AM), a cue that supports aural com-
munication, including speech comprehension (Cazals et al.,
1994; Shannon et al., 1995; Singh and Theunissen, 2003). The
findings revealed that transient developmental deprivation dis-
rupted AM detection and affected perceptual learning in a
subject-specific manner.

Materials and Methods
Subjects. Male and female Mongolian gerbils (Meriones unguiculatus, n �
93) were housed on a 12 h light/12 h dark cycle. Pups were weaned from
commercially obtained breeding pairs (Charles River) at postnatal day 30
(P30) and separated by sex into different cages. Food and water were
available ad libitum unless otherwise noted. All procedures were ap-
proved by the Institutional Animal Care and Use Committee at New
York University.

Transient auditory deprivation. Transient, bilateral auditory depriva-
tion was induced by inserting malleable earplugs (BlueStik Adhesive
Putty, RPM International or Silicone Elastomer, Sammons Preston
Rolyan) into each ear canal (Mowery et al., 2014). Pups were restrained
and positioned on a soft pad under a stereomicroscope (Olympus). The
pinna was manipulated to allow for a clear view of the external auditory
meatus, and curved, blunt forceps were used to insert each earplug. Ear-
plugs were checked on a daily basis, and adjusted or reinserted, as neces-
sary. Earplugs were left in place for 12 d (P11-P23 or P23-P35). On the
day of earplug removal, the tympanic membrane was visualized and
confirmed to be intact and clear of any residual debris. Sham littermates
received identical handling and pinna manipulation (without earplug
insertion).

An important caveat is that the hearing loss manipulation was not
perfect: animals did occasionally lose earplugs, primarily due to the wid-
ening of the ear canal during development. To keep track of this uncon-
trolled variability, we noted how many (0, 1, or 2) earplugs were in place
on each day. We then calculated an “earplug score” by determining the
average number of earplugs that were in place each day for an individual
animal. If an animal experienced “perfect” deprivation (i.e., the earplugs
never fell out or moved out of place), the earplug score would be 2. If both

earplugs fell out every day, the animal’s earplug score would be 0. These
earplug scores were later used to determine whether the stability of
the earplugs could account for any of the variability in behavioral perfor-
mance across animals (see Results).

Auditory brainstem response (ABR) recording. ABRs were recorded to
assess the attenuation induced by the earplug procedure and to assess
peripheral status once the plugs were removed after an extended period
of insertion (12 d). Animals were anesthetized with intraperitoneal in-
jections of ketamine (30 mg/kg; Bioniche Pharma) and pentobarbital (50
mg/kg; Sigma-Aldrich) and placed in a small sound booth (Industrial
Acoustics). Supplemental anesthesia (20% of induction dose) was deliv-
ered, as needed, to maintain a stable anesthetic state. Animal temperature
was maintained at 37°C via a thermal rectal probe and digitally controlled
heating blanket (Harvard Apparatus). Recordings were made by insert-
ing pin electrodes subcutaneously at the vertex of the skull and just
caudal to the right pinna; ground was inserted into the left leg. Voltage
responses were amplified (10,000 gain) using a P15 or P55 model pream-
plifier (Grass Technologies). Signals were bandpass filtered 0.3–3 kHz,
and an additional 32 dB of gain was introduced with a Brownlee Preci-
sion Model 440 amplifier (AutoMate Scientific) before digitizing at a 24.4
kHz sampling rate (RZ6, Tucker Davis Technologies) and acquiring on a
PC (Dell) running Microsoft Windows 7.

Stimulus generation and data acquisition were controlled by custom
Python scripts (provided by Brandon Warren and Edwin Rubel, Univer-
sity of Washington, Seattle). Stimuli were routed through an RZ6 multi-
function processor (Tucker Davis Technologies), which performed both
the digital-to-analog conversion and the signal attenuation, before deliv-
ery to a calibrated free-field speaker positioned 26 cm above the animal’s
head. Stimuli were 5 ms pure tones with 2 ms linear ramp rise-fall times.
We presented seven frequencies (0.5, 1, 2, 4, 6, 8, and 16 kHz), which span
the subultrasonic region of the gerbil audiogram (Ryan, 1976). Each
stimulus was presented at a rate of 23/s with alternating polarity. Tones
were presented in 10 dB descending steps until the response disappeared,
at which point the intensity was increased by 5 dB until a reliable re-
sponse was observed (“threshold”). Traces were averaged across 250
sweeps, except near threshold, where 500 sweeps were averaged. Peak
amplitudes were calculated as the absolute voltage difference between the
wave peak and the following trough.

We labeled waves according to the nomenclature set forth by Burkard
et al. (1993) (see Fig. 7A). According to Boettcher (2002), wave i of the
gerbil ABR is homologous to wave I in humans, wave ii/iii in the gerbil is
homologous to the human wave III, and gerbil wave iv is homologous to
the human wave V. It is generally agreed that wave I of the human ABR
(wave i here) is generated by the distal portion of the auditory nerve
(Sohmer et al., 1974; Buchwald and Huang, 1975; Starr and Hamilton,
1976; Achor and Starr, 1980), Wave III in the human (wave ii/iii here)
arises primarily from activity in the cochlear nucleus (Møller and Jan-
netta, 1983; Melcher and Kiang, 1996; Melcher et al., 1996), and the
human wave V (wave iv here) reflects activity from multiple sources,
including the cochlear nucleus, superior olivary complex, and lateral
lemniscal tract (Hashimoto et al., 1981; Møller and Jannetta, 1982, 1983).

To determine whether earplugs disrupt cochlear frequency selectivity
(Dolan et al., 1985), we implemented a forward masking paradigm.
Probe tones (5 ms duration; 2 ms rise-fall; 4 and 6 kHz) were presented at
15 dB above each animal’s threshold. Pure tone maskers (50 ms duration;
5 ms rise-fall) were presented at increasing intensities (5 dB steps) until
the amplitude of the rising portion of the wave ii/iii complex (calculated
from the preceding trough) of the probe response was reduced by at least
50%. The masker level required to induce this reduction was considered
the masker threshold. Masker frequencies were centered around the
probe frequency in 1/8 octave intervals. The masker-probe interval re-
mained constant at 5 ms. Masker thresholds were used to construct fre-
quency tuning curves. Tuning sharpness (Q10) was measured by dividing
the probe frequency by the bandwidth 10 dB above the tip. Masker-probe
combinations were presented at a fixed rate of 10/s.

Behavioral training and testing. Animals performed a Go/NoGo pro-
cedure (Heffner and Heffner, 1995) used previously in our laboratory
(Sarro and Sanes, 2010, 2011; Sarro et al., 2011; Rosen et al., 2012; Buran
et al., 2014; Kang et al., 2014; Sarro and Sanes, 2014). Briefly, animals

10832 • J. Neurosci., July 29, 2015 • 35(30):10831–10842 Caras and Sanes • Behavioral Deficits from Transient Deprivation



were placed in a test cage containing a stainless steel lick spout positioned
above a metal floorplate. Spout contact was monitored via a 940 nm
infrared LED (LTE 302, Lite On) and photodiode (OP950, Optek Tech-
nology) housed within a custom apparatus (Techwell Solutions). Inter-
ruption of the infrared beam triggered water delivery via a syringe pump
(New Era Pump Systems). Sound stimuli were generated using a multi-
function processor (RZ6; Tucker Davis Technologies) and delivered
from a calibrated free-field speaker (DX25TG05-04; Vifa) positioned 1 m
in front of the test cage. The test cage and speaker were housed within a
sound-attenuating room (GretchKen) and monitored remotely via a
closed-circuit video monitor. All aspects of the experiment were con-
trolled using custom Python scripts developed in our laboratory (Dr.
Bradley Buran).

Animals were initially trained to drink continuously while in the pres-
ence of steady, unmodulated, 60 dB SPL broadband noise with a low-
frequency fall off of 12 dB/octave at 2.5 kHz and a high-frequency fall off
of 12 dB/octave at 20 kHz. Animals then learned to withdraw from the
lick spout when the noise transitioned from unmodulated to amplitude
modulated (AM) by pairing the AM cue with a mild (0.5–1.0 mA), 300
ms electrical shock (Lafayette Instruments) delivered via the lick spout.
The AM cue lasted for 1 s and consisted of a 5 Hz sinusoidal modulation
(Fig. 1). The gain of the AM signal was adjusted to control for changes in
average power due to changes in modulation depth (Viemeister, 1979;
Wakefield and Viemeister, 1990). Responses were scored by determining
whether the animal withdrew from the spout for at least 50 ms during the
final 100 ms of the behavioral trial (Fig. 1, blue shaded regions). With-
drawals for �50 ms were procedurally defined as correct responses
(“hits”) on Go trials (AM noise), and incorrect responses (“false alarms”;
[FAs]) on NoGo trials (unmodulated noise).

Animals were presented with a series of fully modulated (100% AM
depth) trials for the first few sessions. Go trials were randomly inter-
spersed with 3 to 5 NoGo trials to avoid temporal conditioning. At the
end of this procedural training, all animals had achieved a d� � 1.5 for
100% depth (see Data analysis) and were moved on to the testing regi-
men. On the final day of procedural training, and throughout all testing
sessions, the RMS stimulus intensity was held constant at 45 dB SPL. Each
testing session began with a series of 100% depth “reminder trials” to
ensure that the animal was motivated and willing to perform. Once ani-
mals responded correctly to 3 reminder stimuli in a row, a range of 5 AM
depths were presented in descending order (interspersed with NoGo
trials, as above). Because the likely decision variable for amplitude mod-
ulation discrimination is logarithmic (Wakefield and Viemeister, 1990),
depths were presented on a dB scale (re: 100% depth). Thus, 0 dB (re:
100% depth) refers to fully modulated (100% depth) noise, and decreas-
ing (negative) numbers refer to smaller depths. These values are not to be
confused with dB SPL values, which indicate the RMS sound level of the
stimulus. Within a session, consecutive depths always varied by 3 dB.

Stimulus values were chosen to bracket the animal’s likely threshold
(procedurally defined as the AM depth that yielded a sensitivity of d� �
1), such that the three largest (easiest) of the five depths elicited d� val-
ues � 1, and the two lowest (hardest) of the five depths elicited a d� � 1.
Based on the naive thresholds obtained in previous studies (Sarro and
Sanes, 2010; Sarro et al., 2011; Rosen et al., 2012), we chose the following

five depths to begin our initial test session: 0, �3, �6, �9, and �12 dB re:
100%. After animals completed 8 trials at each depth within a session,
behavioral performance was assessed online, and stimulus values were
adjusted accordingly to maintain the threshold bracketing. An animal’s
final AM threshold for a session determined the 5 starting AM values for
the next day.

Because individual animals vary in their sensitivity to pain (Mogil,
1999), shocks were adjusted for each subject to reliably elicit spout with-
drawal, without dissuading the animal from resuming drinking shortly
thereafter. Because the stimulus values were chosen each session to
bracket the animal’s threshold, it was likely that animals would fail to
detect the smallest of the AM depths. If shocks were delivered during
such trials, the animal would likely either stop drinking altogether, or
would peck intermittently at the spout, resulting in a high FA rate. To
avoid these possibilities, the shock was turned off for the lowest two
depths presented. In a previous study, we validated the necessity of this
approach and confirmed that animals do not become differentially con-
ditioned to the presence or absence of the shock (Buran et al., 2014).

Data analysis. Behavioral sessions consisting of at least five different
presentations of five different depths were analyzed. The percentage of
“yes” responses (spout withdrawals) was plotted as function of modula-
tion depth. These psychometric functions were fit using the maximum
likelihood procedure of the open-source package psignifit for MATLAB
(The MathWorks) (Wichmann and Hill, 2001a, b; Fründ et al., 2011).
We found that a linear transform of modulation depths (i.e., the
“mw0.1” core available in the bootstrap inference algorithm) fitted with
a cumulative distribution function of the standard normal distribution
provided a reasonable fit for the vast majority of our data. The formula
for this function is as follows:

�� x; m, w, �, �� � � � �1 � � � �� F� x; m, w�

where: F�x; m, w� � 	�z���

w
�x � m��; z��� � 	�1�1 � �� � 	�1���

and 	 is the inverse of the cumulative Gaussian. Here, x represents
stimulus difficulty (modulation depth), m the midpoint, w the width
of the interval over which F(x; m, w) rises from � to 1 � �, � the lapse
rate, and � the FA rate. Both m and w were unconstrained, and � was
fixed at 0.1 (the default in psignifit). The prior distribution for the
FA rate (�) was defined as a beta distribution with the parameters
	 � NFA � 1 and 
 � NCR � 1 such that the mode of the
distribution was fixed at the session’s observed FA rate. The prior
distribution for the lapse rate (�) was defined as a beta distribution
with a mode of 0.05 (	 � 1.5; 
 � 12). Similar values were used in a
previous study from our laboratory that examined gerbil frequency
modulation depth detection (Buran et al., 2014).

The deviance (a measure that describes the goodness of fit for a model)
was calculated for each of our fits (for details, see Wichmann and Hill,
2001a, b; Fründ et al., 2011). We discarded any fit whose deviance ex-
ceeded the 95th percentile of the deviances from a bootstrapped sample
of 2000 simulated datasets. Valid fitted functions were transformed to the
signal detection metric d�, where d� � Z(hit rate) � Z(FA rate) (Green
and Swets, 1966). d� approaches infinite values when the FA rate � 0 or
the hit rate � 1. To avoid this scenario, a log-linear correction was ap-
plied, such that 0.5 was added to the number of hits, misses, FAs, and CRs
before fitting (Hautus, 1995).

Threshold was determined for each of our valid fits and defined as the
AM depth at which d� � 1. In two sessions (from the same earplug-reared
animal), the performance was so poor that the psychometric function did
not reach a d� of 1. In both of these cases, threshold was set to the upper
bound for amplitude modulation depth (0 dB re: 100%).

Statistics. Statistical analyses were performed using JMP 9.0.1 (SAS) on
a Mac platform. Unless otherwise stated, all data met assumptions of
normality and homogeneity of variance (as assessed by Levene’s test).
When violations of sphericity were present (as assessed by Mauchley’s
test), Greenhouse–Geisser corrections were applied (Greenhouse and
Geisser, 1959). This correction is responsible for any noninteger degrees
of freedom reported here. For ABR analyses, some peaks were not present
for all sound levels in all animals. Missing values present an obstacle for

0 1 2 3 4 5 6
Time (sec)

Go NoGo NoGo NoGo Go

7

Figure 1. Schematic of AM detection task. Go stimuli (sinusoidal amplitude modula-
tions at a rate of 5 Hz) are embedded within a broadband noise carrier (gray oscillogram).
Trials were presented approximately once a second as long as the animal made spout
contact. Three to five NoGo trials were interspersed between each Go trial to avoid tem-
poral conditioning. A response was scored as “withdrawal” if the animal broke contact
with the spout for �50 ms during the last 100 ms of the trial (blue regions). A 300 ms
aversive shock (yellow regions) followed each Go trial.
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performing a repeated-measures ANOVA; therefore, we initially ana-
lyzed our data twice: once including all animals (discarding any sound
levels with missing values) and again including all sound levels (discard-
ing any animals with missing values). Both methods yielded qualitatively
similar results; therefore, we report only the results of the latter analysis
here. In instances of multiple comparisons, p values were corrected using
the Holm–Bonferroni method.

Results
Characterizing earplug-induced attenuation
To measure the attenuation induced by earplugs as a function of
frequency, ABRs were recorded in five animals immediately be-
fore and during acute earplug insertion. These animals were be-
tween P35 and P36 at the time of ABR recording (Fig. 2A) and
were not tested in the behavioral paradigm described below. Rep-
resentative ABR traces from a single animal before and during
earplug insertion demonstrate marked sound attenuation (Fig.
2B). As shown in Figure 2C, earplugs elevated ABR thresholds
across all frequencies tested. A two-way repeated-measures
ANOVA revealed significant effects of frequency (F(2.97,11.89) �
5.82, p � 0.01) and earplug (F(1,4) � 994.57, p � 0.0001). A
significant interaction between the two variables (F(1.98,7.92) �
111.60, p � 0.0001) resulted in greater attenuation for higher
frequencies, with average threshold shifts ranging from 15 dB at 1
kHz to 49 dB at 6 kHz (Fig. 2D).

AM detection is vulnerable to auditory deprivation during a
critical period
To determine whether the maturation of AM depth perception
was vulnerable to transient developmental deprivation, animals
were either reared with normal hearing (n � 13) or with bilateral
earplugs from P11 (the day of ear canal opening) to P23 (n � 16).
At P38, 15 days after earplug removal, animals were tested on the

AM depth detection task (Fig. 3A). Representative data from one
earplug-reared animal and one normally reared littermate illus-
trate that P11-P23 deprivation decreases the sensitivity of psy-
chometric functions at P38 (Fig. 3A). On average, earplug rearing
elevated AM detection thresholds by 2.3 dB (t(27) � 2.25, p �
0.03; Fig. 3A).

This finding could reflect either a specific developmental crit-
ical period during which the maturation of AM detection is vul-
nerable to auditory deprivation or could reflect a vulnerability to
hearing loss that does not depend on age. To distinguish between
these possibilities, a separate group of animals was reared either
with normal auditory input (n � 11) or with earplugs from P23-
P35 (n � 12) and tested on the AM detection task at P50 (Fig. 3B).
Thus, these animals experienced the same duration of depriva-
tion (12 d) and the same duration of restored sensory input (15 d)
as those in the first experimental group. As shown in Figure 3B,
P23-P35 deprivation did not affect subsequent AM depth percep-
tion (t(21) � 0.10, p � 0.92). Together, these findings suggest that
P11-P23 encompasses a critical period during which AM percep-
tual development is vulnerable to transient sound attenuation.

The AM detection impairment induced by P11-P23 earplug-
ging may reflect a permanent deficit or one that resolves with
additional maturation. To address this issue, a separate, naive
group of animals was reared either with normal auditory input
(n � 12) or with earplugs from P11-P23 (n � 12) and tested on
the AM depth detection task between P100 and P119 (sexual
maturation occurs at 
P90; Fig. 3C). On average, adult animals
raised with earplugs between P11 and P23 displayed normal AM
detection thresholds (t(22) � 1.21, p � 0.24; Fig. 3C), but 2 of the
12 animals displayed AM thresholds 2.4 and 4.0 dB above the
normative adult range. Thus, critical period deprivation induced
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Figure 2. Bilateral earplugs (EPs) induce reliable sound attenuation. A, Timeline of experimental manipulations for data shown in B–D. Animals were raised with normal auditory input.
Immediately (minutes) after the collection of baseline ABRs at either P35 or P36, bilateral EPs were inserted and ABRs were recorded again. Threshold was identified as the lowest sound level to elicit
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detection task. D, Group threshold shifts as a function of frequency. Data are mean � SEM (n � 5).
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a perceptual deficit that resolved by adulthood for most, but not
all, animals tested.

In some animals, the earplugs became dislodged or were lost
as the ear canal widened during development. To quantify this,
we calculated earplug scores (see Materials and Methods), which
ranged from 1.1 (indicating an average of approximately one
earplug in place, each day) to 2 (indicating perfect plugging)
(mean � SD � 1.5 � 0.2, n � 40). To determine whether earplug
stability impacted the behavioral results presented above, we
asked whether there was a correlation between each individual
animal’s earplug score and its initial AM depth threshold. No
correlations were found for animals raised with earplugs between
P11 and P23 and tested at P38 (Pearson’s r � 0.17, p � 0.54, n �
16), animals raised with earplugs between P23 and P35 and tested
at P50 (r � 0.39, p � 0.20, n � 12), or animals raised with
earplugs between P11 and P23 and tested as adults (r � 0.22, p �
0.50, n � 12). These findings suggest that the stability of the
earplugs does not account for the behavioral variability across
animals.

Critical period deprivation affects perceptual learning in
some animals
The findings presented above revealed that critical period sound
attenuation elevated juvenile naive AM detection thresholds.
However, AM sensitivity can improve with training, raising the
possibility that transient deprivation could also affect perceptual
learning (Sarro and Sanes, 2010, 2011; Fitzgerald and Wright,
2011; Sarro et al., 2011). To explore this issue, juvenile animals
raised with earplugs from P11-P23 (n � 9 of the original 16), and
normally reared littermates (n � 7 of the original 13) were tested
on the AM depth detection task for 7 consecutive days (Fig. 4A).
As shown in Figure 4B, performance improved with repeated
testing for both groups. An ANCOVA revealed a significant effect
of task experience (F(1,108) � 27.93, p � 0.0001), such that AM
detection thresholds decreased by 0.88 dB (re: 100% depth) per
test day. No significant interaction between test day and earplug
rearing was observed (F(1,108) � 0.71, p � 0.40); however, there
was a significant effect of earplug rearing alone (F(1,108) � 14.21,
p � 0.0003). On average, AM detection thresholds of earplug-

reared animals were 2.5 dB higher than their normally reared
littermates across all testing days. A closer look at the distribution
of final AM thresholds reveals that 7 d of repeated testing failed to
restore normal performance in 5 of 9 of earplug reared animals.
Here, note that we define “normal” as a function of both age and
experience.

These results indicate that, at a group level, critical period
deprivation elevated AM detection thresholds but did not impair
the overall rate of perceptual learning. Because the adult data
(Fig. 3C) suggested between-subject variability in the recovery of
AM detection, we examined the effect of repeated testing on a
case-by-case basis. For each animal, AM detection thresholds
were plotted as a function of testing day and were fit with a linear
regression. Although each subject improved over the 7 consecu-
tive testing days, they did so at different rates, particularly those
raised with bilateral earplugs (Fig. 4C). To determine whether
there was a relationship between the rate of improvement and
naive AM sensitivity, we plotted the slope of each regression line
as a function of the initial AM threshold (Fig. 4D). Normally
reared animals with low (good) starting thresholds improved
more slowly than animals with poorer initial performance (Pear-
son’s r � �0.81, p � 0.03). No such correlation was observed for
animals raised with transient deprivation (Pearson’s r � �0.30,
p � 0.43). Indeed, the 6 earplug-reared animals (Fig. 4D, red
circles) that fall outside the error margins of the control fit indi-
cate that the majority of earplug-reared animals improved either
more slowly (4 of 9) or more quickly (2 of 9) than would be
expected from their naive performance. These findings suggest
that critical period deprivation affects perceptual learning in a
subject-specific manner.

Elevated AM thresholds are not explained by differences in
training or task-specific factors
Elevated juvenile AM thresholds induced by P11-P23 deprivation
could reflect a perceptual deficit or could instead result from
differences in procedural training. If earplug-reared animals were
slower to learn the task than their normally reared littermates, or
did not learn the task as well, then performance may have been
poorer. To address this issue, we examined behavioral perfor-
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mance during the 3 training days leading up to the AM test ses-
sion at P38 (Fig. 5A). As shown in Figure 5B, both groups
displayed similar rates of improvement in their sensitivity (d�) to
the training stimulus (100% depth). As expected, a two-way

mixed-model ANOVA revealed a significant effect of trial num-
ber on cumulative d� (F(92,2484) � 102.7, p � 0.0001), but no
effect of earplug experience (F(1,27) � 0.0221, p � 0.88), and no
interaction between the two variables (F(92,2484) � 0.2193, p �
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1.00). Animals from both groups required a similar number of
trials to reach a d� of 1 (t(27) � 0.37, p � 0.72; data were log-
transformed before testing because they were non-normally
distributed; Fig. 5C). Furthermore, earplug rearing had no effect
on the maximum d� value achieved during training (t(27) �
�0.87, p � 0.39; Fig. 5D), indicating that both groups were sim-
ilarly proficient at the task before they were advanced to the psy-
chometric testing regimen.

Elevated AM thresholds could also be attributed to several
task-specific factors, such as confidence and motivation. To ad-
dress these issues, we examined two metrics (Fig. 6A). First, FA
rate was assessed because it can be influenced by experimental
variables unrelated to perception, including the difficulty of the
stimulus set and the shock level. All animals maintained relatively
low (�10%) FA rates (Fig. 6B), and no significant group effect
was observed (t(27) � �0.32, p � 0.75). Second, we examined the
subjects’ participation in the task. Within a given session, animals
were required to complete at least 8 trials per depth before we
adjusted any stimulus values. Thus, between-group differences in
trial number could result in systematic differences in task diffi-
culty. As illustrated in Figure 6C, P11-P23 earplug-reared and
normally reared littermates performed a similar number of Go
trials (t(27) � �0.69, p � 0.50). Furthermore, AM detection
thresholds did not significantly correlate with the number of Go
trials completed (Pearson’s r � �0.21, p � 0.28; data not shown),
indicating that motivational differences between the groups are
unlikely to account for the AM detection deficits. Collectively,
these findings suggest that task-specific factors are unlikely to
explain the poor AM detection thresholds exhibited by earplug-
reared animals.

Elevated AM thresholds are not explained by impaired
peripheral function
It is possible that P11-P23 earplug-reared juveniles display
poorer AM detection because their peripheral transduction sys-
tem was damaged or compromised by the experimental manip-
ulation, resulting in decreased audibility. To address this issue,
we recorded ABRs from animals raised with earplugs from P11-

P23 (n � 7 of the original 16) and normally reared littermates
(n � 6 of the original 13). These animals were tested on the AM
depth detection task at P38 and were thus included in the behav-
ioral data presented in Figures 3, 5, and 6. However, these animals
were not tested repeatedly, and thus did not contribute to the data
in Figure 4. ABRs were recorded shortly (1–72 h) after obtaining
psychometric functions at P38 (Fig. 7A). As illustrated in Figure
7B, representative ABR traces from one earplug-reared animal
and one normally reared littermate suggest that earplug removal
allowed audibility to return to control levels. ABR audiograms
from the two groups did not differ from one another (Fig. 7C). A
two-way mixed-model ANOVA revealed a significant effect of
frequency (F(6,60) � 46.82, p � 0.0001), but no effect of earplug
rearing (F(1,10) � 0.12, p � 0.73) nor an interaction between the
two variables (F(6,60) � 0.79, p � 0.58). To determine whether
peripheral hearing status predicted behavioral performance, we
averaged ABR thresholds across 4, 6, 8, and 16 kHz (the four
audiogram frequencies that fell within the range of our noise
stimulus bandwidth) for each animal. As shown in Figure 7D,
ABR thresholds did not significantly correlate with AM detection
thresholds (Pearson’s r � 0.19, p � 0.55). Together, these results
indicate that the transient earplug-induced impairment of AM
detection thresholds could not be explained by inadequate pe-
ripheral sensitivity.

Recent findings suggest that the selective loss of high-thre-
shold auditory nerve fibers may negatively impact suprathresh-
old envelope coding and perception, even in the absence of
reduced peripheral sensitivity (Bharadwaj et al., 2014). Thus, if
subtle suprathreshold deficits in cochlear function were present
in earplug-reared animals, then these deficits could have contrib-
uted to the impairment in AM detection. We explored this pos-
sibility using two different approaches. First, ABR peak latencies
and amplitudes (evoked by 4 kHz pure tones) were examined as a
function of sound level. If the earplug manipulation induced
cochlear damage, then animals should have displayed shallower
growth functions (i.e., reduced ABR amplitudes and longer ABR
latencies at medium to high sound levels). As illustrated in Figure
7E–G, a two-way mixed-model ANOVA revealed that ABR peak
amplitudes grew larger as the sound level increased (wave i:
F(6,18) � 6.65, p � 0.001; wave ii/iii: F(1.21,9.71) � 14.18, p �
0.0001; wave iv: F(5,40) � 10.62, p � 0.0001), but there was no
effect of earplug rearing (wave i: F(1,3) � 5.00, p � 0.11; wave ii/iii:
F(1,8) � 0.97, p � 0.35; wave iv: F(1,8) � 0.90, p � 0.37) nor a
level-condition interaction (wave i: F(6,18) � 1.65, p � 0.19; wave
ii/iii: F(1.21,9.71) � 0.68, p � 0.46; wave iv: F(5,40) � 1.45, p � 0.23).
Similarly, Figure 7H–J reveals that ABR peak latencies decreased
with increasing stimulus intensity (wave i: F(6,18) � 7.24, p �
0.001; wave ii/iii: F(7,70) � 137.73, p � 0.0001; wave iv: F(7,49) �
19.29, p � 0.0001) but were not affected by earplug rearing (wave
i: F(1,3) � 0.21, p � 0.67; wave ii/iii: F(1,10) � 2.14, p � 0.17; wave
iv: F(1,7) � 0.77, p � 0.41) nor by an interaction between the two
variables (wave i: F(6,18) � 1.09, p � 0.41; wave ii/iii: F(7,70) � 1.81,
p � 0.10; wave iv: F(7,49) � 1.14, p � 0.36). There was no signif-
icant correlation between ABR peak amplitudes or latencies with
behavioral AM detection thresholds within individual animals
(all Holm–Bonferroni corrected p � 0.05; data not shown).

Finally, to determine whether the earplug manipulation dis-
rupted the cochlear active process, we assessed frequency selec-
tivity. Forward masking tuning curves from the two experimental
groups did not differ significantly from one another (Fig. 7K–L).
As illustrated in Figure 7M, earplug rearing had no significant
effect on the sharpness of tuning (Q10) at 4 kHz (t(1,8) � 0.58, p �
0.58) or at 6 kHz (t(1,7) � 1.30, p � 0.24). Together, these findings

P11 23 38

EPs No EPs

Test

0

2

4

6

8

10

Fa
ls

e 
al

ar
m

 ra
te

 (%
)

0

50

100

150

N
um

be
r o

f w
ar

n 
tri

al
s

A

B

Control EP-reared
P11-23

Control EP-reared
P11-23

C

No EPs ↓

Figure 6. Elevated AM detection thresholds induced by P11-P23 auditory deprivation can-
not be explained by task-specific factors. A, Experimental timeline for data in B, C. Animals were
raised with either normal auditory input or earplugs (EPs) from P11 to P23. All animals were
tested at P38 (15 d after removal of EPs from the experimental group). B, Mean � SEM FA rates
for juvenile animals reared with P11-P23 EPs and normally reared littermates. C, Mean � SEM;
number of warn trials performed during a single test session. All data were collected at P38.

Caras and Sanes • Behavioral Deficits from Transient Deprivation J. Neurosci., July 29, 2015 • 35(30):10831–10842 • 10837



108

100

90

80

70

60

dB
 S

P
L

B Control EP-reared P11-23 C

25 30 35 40 45
-12

-10

-8

-6

ABR Threshold (dB SPL)

A
M

 th
re

sh
. (

dB
 re

:1
00

%
)

D

r = 0.19
p = 0.55

0

1

2

3

A
m

pl
itu

de
 (μ

V
)

0 20 40 60 80 100
0

2

4

6

La
te

nc
y 

(m
se

c)

Stimulus level (dB SPL)
0 20 40 60 80 100

Stimulus level (dB SPL)
0 20 40 60 80 100

Stimulus level (dB SPL)

wave i wave ii/iii wave iv

0.1 1 10
0

20

40

60

80

R
el

at
iv

e 
M

as
ke

r T
hr

es
ho

ld
 (d

B
)

Masker Frequency (kHz)
0.1 1 10

Masker Frequency (kHz)

4 kHz probe  6kHz probe

E F G

H I J

K L M

0

2

4

6

8

10

 Q
10

4kHz 6kHz
Probe

4 msec 

4 μV 

50

40

30

25

i
ii/iii

iv

0.1 1 10 100
0

20

40

60

Th
re

sh
ol

d 
(d

B
 S

P
L)

Frequency (kHz)

P11 23 41

EPs No EPs

ABRs↓
38 39 40

↓ ↓ ↓↓
BehaviorA

No EPs

Figure 7. Elevated AM detection thresholds induced by P11-P23 auditory deprivation cannot be explained by impaired peripheral function. A, Experimental timeline for data in B–M. Animals
were raised with either normal auditory input or bilateral earplugs (EPs) from P11 to P23. Behavioral data were collected at P38 from all animals (15 d after removal of EPs from experimental group).
ABRs were recorded following behavior (P38-P41). B, Representative ABR traces from an animal reared with P11-P23 EPs and a normally reared littermate. Traces were evoked by a 4 kHz pure tone.
Dashed line indicates onset. Waves labeled as in Burkard et al. (1993). C, Mean � SEM ABR audiograms from animals raised with P11-P23 EPs and normally reared littermates. Data were collected
between P38 and P41. D, Individual behavioral AM detection thresholds ( y-axis) do not correlate with ABR thresholds (x-axis). Here, ABR thresholds represent the average of 4, 6, 8, and 16 kHz
thresholds (the frequencies within the region of the broadband noise used in the behavioral experiments; see shading in B). E–G, Mean � SEM ABR wave i (E), wave ii/iii (F ), and wave iv (G)
amplitudes plotted as a function of sound level. H–J, Mean � SEM ABR wave i (H ), wave ii/iii (I ), and wave iv (J ) latencies plotted as a function (Figure legend continues.)

10838 • J. Neurosci., July 29, 2015 • 35(30):10831–10842 Caras and Sanes • Behavioral Deficits from Transient Deprivation



suggest that elevated AM detection thresholds cannot be ade-
quately explained by deficits in peripheral function.

Discussion
Developmental periods of enhanced experience-dependent plas-
ticity have shaped our understanding of how the early auditory
environment impacts perceptual abilities throughout life, partic-
ularly in the contexts of vocal learning (Marler and Tamura,
1964; Werker et al., 1981; Kuhl et al., 1992), musical training
(Penhune, 2011), and auditory deprivation (Sanes and Bao,
2009). In this study, we found that the developmental critical
periods for certain cortical properties, including evoked firing
rates (Mowery et al., 2014), are closely aligned with a critical
period for perception. Specifically, sensitivity to AM, a temporal
cue that supports vocal communication, is vulnerable to tran-
sient auditory deprivation during a very brief period of develop-
ment, from P11 to 23, but not thereafter. Animals subjected to
sound attenuation during this time window demonstrated pro-
nounced between-subject variability in the rate and extent of
perceptual recovery. Together, these findings suggest that central
disruptions associated with transient developmental deprivation
give rise to lasting perturbations in sound encoding and nonsen-
sory mechanisms that impair the ability to learn about AM fea-
tures. Our results may partially account for the speech and
language delays associated with transient childhood hearing loss.

Potential mechanisms for perceptual impairment
Although AM depth sensitivity is not strongly dependent on
stimulus level (Viemeister, 1979), it is possible that P11-P23
earplug-reared juveniles are poor at AM detection because their
peripheral transduction system was damaged or compromised by
the experimental manipulation, resulting in decreased audibility.
Contrary to this idea, our ABR experiments revealed that co-
chlear function remained intact after earplug rearing (Fig. 7).
These findings suggest that critical period sound attenuation
gives rise to central perturbations that outlast the period of de-
privation, and these disruptions account for the behavioral defi-
cits we report here.

Several previous findings support the notion that central au-
ditory encoding is sensitive to critical period deprivation, yet they
focus largely on monaural manipulations and their effect on bin-
aural processing. In a series of important experiments, Knudsen
and colleagues found that animals that are unilaterally ear-
plugged before the age of P60 adapt to the plug both behaviorally
and neurally, whereas animals that are plugged after P60 show no
evidence of adaptation (Knudsen et al., 1982, 1984b; Knudsen,
1983, 1985; Mogdans and Knudsen, 1992, 1993, 1994). Comple-
mentary results have been obtained in several species, leading to
the conclusion that the central mechanisms underlying binaural
perception depend on early auditory experience (Clements and
Kelly, 1978; Moore and Irvine, 1981; King et al., 1988; Wilming-
ton et al., 1994; Moore et al., 1999; King et al., 2000; Kacelnik et
al., 2006; Popescu and Polley, 2010; Keating et al., 2013, 2015;
Polley et al., 2013; Tomlin and Rance, 2014). These findings are
consistent with a broad range of developmental plasticity studies
that report robust consequences of “competition” experiments in
which a subset of sensory afferents are deprived of stimulation

(e.g., close one eye, plug one ear, trim one whisker). However, the
neural and behavioral effects of system-wide deprivation (e.g.,
close both eyes, plug both ears, trim all whiskers) are not axiom-
atic. For example, the literature clearly indicates that the effects of
bilateral visual deprivation are quite distinct from those due to
unilateral deprivation (Wiesel and Hubel, 1965; Sherman and
Spear, 1982). Therefore, a primary motivation of the present
study was to understand whether auditory deprivation disrupts
behavioral percepts other than sound localization.

Acoustic experience clearly influences the development of
CNS properties that do not depend on binaural processing. For
example, rearing animals in a diminished or abnormal acou-
stic environment disrupts cortical tonotopic organization (de
Villers-Sidani et al., 2007; Barkat et al., 2011) and spectrotempo-
ral processing (Aizawa and Eggermont, 2006; Razak et al., 2008;
Insanally et al., 2009; Rosen et al., 2012). Furthermore, a recent
study from our laboratory identified several discrete critical pe-
riods during which certain cortical cellular and synaptic proper-
ties are vulnerable to transient earplugging (Mowery et al., 2014).
Here, we report that an identical manipulation perturbed the
perception of AM, but only if the manipulation occurred between
P11 and P23 (Fig. 3). Thus, we have identified here a critical
period of gerbil development during which both sound percep-
tion and cortical cellular properties, including evoked activity
(Mowery et al., 2014; their Fig. 6H), are vulnerable to transient
auditory deprivation. Together with earlier work demonstrating
that animals reared with permanent conductive hearing loss dis-
play reduced AM-evoked firing rates (Rosen et al., 2012), these
findings lead to the hypothesis that a brief bout of bilateral depri-
vation during a developmental critical period disrupts cortical
excitability, which in turn generates subsequent deficits in AM
encoding and perception.

Comparison with human literature
Although certain factors make it difficult to directly place our
results within a human context (e.g., hearing onset is prenatal in
humans, but postnatal in gerbils), it is of interest to compare our
findings with the clinical literature. Here, we report that gerbil
AM depth perception is most vulnerable to auditory deprivation
between postnatal day 11 (the age of hearing onset) and postnatal
day 23 (
10 weeks before sexual maturity). By contrast, peak
vulnerability in humans seems to occur between infancy and late
toddlerhood. The best evidence for a human auditory critical
period comes from profoundly deaf children who receive co-
chlear implants. Children implanted before 2 years display
steeper rates of improvement on receptive and expressive lan-
guage tests, compared with those implanted after 36 months
(Niparko et al., 2010). These language deficits persist for at least 6
years after implantation for late-implanted children (Tobey et al.,
2013). Similarly, infants with mild to moderate hearing loss who
receive hearing aid amplification by 3 months of age, and audio-
visual intervention by age 6 months, later score within normal
limits on speech and language assessments and outperform a
similar cohort of children that were identified as hearing-
impaired after 12 months of age (Fulcher et al., 2012). These
findings suggest that our P11-P23 gerbil critical period is broadly
comparable to 0 –2 years in humans. It is important to note,
however, that a more severe hearing loss manipulation and/or a
more difficult behavioral task may reveal vulnerabilities beyond
the P11-P23 range reported here.

4

(Figure legend continued.) of sound level. K–L, Mean � SEM ABR forward masking tuning
curves for a 4 kHz probe (K) and a 6 kHz probe (L). K, L, The relative masker threshold (y-axis) is
normalized to the level at the tip of the curve. For details, see Materials and Methods. M,
Individual (circles) and mean � SEM (bars) Q10 values for 4 kHz and 6 kHz curves.
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Recovery of perceptual skills is subject-specific
When tested as adults, there was no significant difference in av-
erage AM sensitivity between a group of animals raised with P11-
P23 earplugs versus a group of normally reared littermates (Fig.
3C). This result is consistent with previous findings suggesting
that juvenile perceptual deficits can resolve with additional mat-
uration. For example, barn owls reared with a unilateral earplug
demonstrate impaired sound localization immediately following
the removal of the plug, but performance can improve to normal
levels over time (Knudsen et al., 1982, 1984a, b). Similarly, chil-
dren with a history of otitis media display deficits in binaural
hearing (Moore et al., 1991; Pillsbury et al., 1991; Hall et al., 1995;
Hogan et al., 1996; Hall et al., 1998) and speech processing (Jerger
and Johnson, 1988; Gravel and Wallace, 1992; Gravel et al., 1996;
Hall et al., 2003) that gradually recover after normal peripheral
audibility is restored. However, some individuals with a history of
hearing loss continue to perform poorly on perceptual tasks,
long after the average group differences are statistically insig-
nificant (Wilmington et al., 1994; Hall et al., 1995). Our results
mirror this human finding: some earplug-reared gerbils (2 of
12) displayed elevated AM thresholds �3 months after ear-
plug removal (Fig. 3C).

The effects of early deprivation may extend beyond a sensory
deficit. When earplug-reared juvenile animals were tested on the
AM detection task for 7 consecutive days, the rate of improve-
ment was quite variable. Five of nine earplug-reared subjects per-
formed more poorly than the worst control animal after 7 days of
testing, and four of these subjects progressed more slowly than
would be predicted from their initial AM depth thresholds (Fig.
4). This finding is consistent with the human behavioral litera-
ture. Developmental hearing loss can impair cognitive abilities,
such as learning (Pittman et al., 2005; Conway et al., 2011) and
memory (Burkholder and Pisoni, 2003; Pisoni and Cleary, 2003;
Pisoni et al., 2011; Beer et al., 2014; Kronenberger et al., 2014).
Thus, in some individuals, experience-dependent changes in
CNS properties may impact nonsensory processing. Together,
these results suggest that nonsensory factors (e.g., decision mak-
ing, learning, and memory) may contribute to individual differ-
ences in perceptual recovery.

In conclusion, experience can directly regulate the anatomical
and functional development of CNS regions devoted to sensory
processing, particularly during discrete developmental epochs. In
principle, these experience-dependent changes could either in-
duce life-long perceptual deficits or create transient impediments
that resolve by adulthood. To distinguish between these possibil-
ities, we assessed the effect of transient auditory deprivation on
AM detection in immature and mature animals. Our key finding
is that even a brief bout of auditory deprivation disrupted juve-
nile AM detection and affected perceptual learning in a subject-
specific manner. Because the auditory periphery was functionally
normal, our results suggest that one or more central loci (e.g.,
Mowery et al., 2014) are responsible for the behavioral impair-
ments described here.
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