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Manipulations of the sensory environment typically induce greater changes to the developing nervous system than they do in adulthood.
The relevance of these neural changes can be evaluated by examining the age-dependent effects of sensory experience on quantitative
measures of perception. Here, we measured frequency modulation (FM) detection thresholds in adult gerbils and investigated whether
diminished auditory experience during development or in adulthood influenced perceptual performance. Bilateral conductive hearing
loss (CHL) of �30 dB was induced either at postnatal day 10 or after sexual maturation. All animals were then trained as adults to detect
a 5 Hz FM embedded in a continuous 4 kHz tone. FM detection thresholds were defined as the minimum deviation from the carrier
frequency that the animal could reliably detect. Normal-hearing animals displayed FM thresholds of 25 Hz. Inducing CHL, either in
juvenile or adult animals, led to a deficit in FM detection. However, this deficit was greater for juvenile onset hearing loss (89 Hz) relative
to adult onset hearing loss (64 Hz). The effects could not be attributed to sensation level, nor were they correlated with proxies for
attention. The thresholds displayed by CHL animals were correlated with shallower psychometric function slopes, suggesting that hearing loss
was associated with greater variance of the decision variable, consistent with increased internal noise. The results show that decreased
auditory experience has a greater impact on perceptual skills when initiated at an early age and raises the possibility that altered
development of CNS synapses may play a causative role.
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Introduction
The influence of sensory experience on neural structure and
function varies with age. Loss of peripheral sensory activity has a
greater impact when it occurs during developmental sensitive
periods. Interventions that restore activity (e.g., cochlear pros-
theses) during these epochs are associated with better recovery of
neural function (Ponton and Eggermont, 2001; Keuroghlian and
Knudsen, 2007; Espinosa and Stryker, 2012; Kral and Sharma,
2012). However, the onset and duration of sensitive periods dur-
ing which neural function is vulnerable to sensory deprivation
depends on the specific property (Hooks and Chen, 2007; de
Villers-Sidani and Merzenich, 2011; Erzurumlu and Gaspar,
2012). Therefore, if neural-sensitive periods for sensory depriva-
tion are a reliable proxy for perception, then behavioral measures
should display a strong dependence on the deprivation age of
onset. Here, we tested this principle by measuring perceptual
performance in gerbils that were reared with hearing loss or that
acquired the same hearing loss in adulthood.

Auditory perceptual deficits are commonly attributed to pe-
ripheral dysfunction because inner ear damage disrupts cochlear
processing (Oxenham and Bacon, 2003). However, prolonged
periods of conductive hearing loss (CHL) due to chronic otitis
media may also induce perceptual deficits (Whitton and Polley,
2011). In fact, the central encoding of spatial location is pro-
foundly altered by unilateral CHL and these functional changes
can account for impaired perceptual abilities (Clements and
Kelly, 1978; Knudsen et al., 1984a, 1984b; Wilmington et al.,
1994; Moore et al., 1999; Parsons et al., 1999; King et al., 2000;
Popescu and Polley, 2010). Furthermore, direct measures from
auditory cortex demonstrate that CHL induced at the time of ear
canal opening disrupts synapse function, but not when induced
in adulthood (Takesian et al., 2012). Therefore, we investigated
the perceptual consequence of bilateral CHL because this form of
hearing loss produces air-conducted sound attenuation but does
not raise bone-conducted thresholds, indicating no cochlear
damage (Tucci et al., 1999).

To evaluate a sensitive period for perceptual maturation, we
measured frequency modulation (FM) detection, a fundamental
property of communication sounds, including speech (Singh and
Theunissen, 2003). Because this percept matures slowly (Banai et
al., 2011), we reasoned that it would remain vulnerable to depri-
vation during development. Indeed, children and adults with
sensorineural hearing loss display poorer FM detection thresh-
olds (Moore and Skrodzka, 2002; Buss et al., 2004; Halliday and
Bishop, 2006). Because there is evidence both for neural sensitive
periods and neural consequences of adult-onset hearing loss
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(Syka, 2002; de Villers-Sidani and Merzenich, 2011; Kral and
Sharma, 2012), we controlled for the onset age, magnitude, and
duration of CHL. Our findings reveal that FM detection thresh-
olds were impaired by hearing loss in both young and adult ani-
mals, but the effect was more severe when hearing loss onset
occurred during development.

Materials and Methods
Animals and groups. Behavioral data were obtained from adult Mongo-
lian gerbils (Meriones unguiculates) divided into three treatment groups:
normal-hearing gerbils (control adult, n � 16 of either sex), gerbils with
CHL induced in adulthood (adult CHL, n � 23 of either sex), and gerbils
with CHL induced before ear canal opening (postnatal day 10 [P10]
CHL, n � 17 of either sex). All groups were trained and tested on the
behavioral task as adults (�P70). Two adult CHL and one P10 CHL
gerbil were excluded from the study because they failed to learn the task
after 10 sessions. An additional adult CHL was removed from the study
after it developed an infection. All animals were weaned at the same age,
housed in our animal colony, and trained and tested under the same
conditions.

Three cohorts comprised the P10 CHL group and were deprived be-
fore ear canal opening. Two of these cohorts were tested as young adults
at �P90 (i.e., after 80 d of deprivation). To determine whether duration
of deprivation has an impact on FM depth perception, one cohort was
tested after 1 year of CHL. Because there was no statistically significant
difference in the variance of log-transformed FM thresholds (Levene’s
test, p � 0.36, df � 1, F � 0.89) or mean FM threshold (Welch’s two-
sample t test, t � 0.24, df � 13.24, p � 0.81) between those tested as
young adults and those tested after 1 year of sensory deprivation, we
pooled the data for all subsequent analyses.

The initial experiment for testing the effect of acute sensory depriva-
tion on FM detection in adults (i.e., the adult CHL group) used six gerbils
of either sex that had prior experience on the task as normal-hearing
adults. The second and third cohorts of this group (six gerbils each of
either sex) had no prior experience at the time of training and testing. In
the first three cohorts, all animals were tested after 14 –30 d of sensory
deprivation. To determine whether duration of deprivation has an im-
pact on FM depth perception, an additional adult cohort (five gerbils of
either sex) was tested after 80 d of sensory deprivation, similar to the P10
CHL group (see Fig. 2C, orange diamonds). We found no statistically
significant difference in the variance of log-transformed FM thresholds
(Bartlett’s test, T � 2.46, p � 0.29) or mean FM threshold (one-way
ANOVA, F � 1.15, p � 0.33) between these three subgroups (i.e., trained
adult CHL, acute adult CHL, and aged acute CHL). Therefore, we treated
all adult-onset CHL animals as a single group for all subsequent analyses.

Surgery for CHL. Bilateral CHL was induced before ear canal open-
ing (P10) for the P10 group or after sexual maturation (P83) for the
adult CHL group. Short-term surgical analgesia was induced using
methoxyflurane (Medical Developments International) and the mal-
leus removed through a perforation in the tympanic membrane
(Tucci et al., 1999; Rosen et al., 2012). This procedure induces an
attenuation of �55 dB at 4 kHz, as assessed by auditory brainstem
response (Tucci et al., 1999; Rosen et al., 2012). However, behavioral
measures obtained in the present study indicate an attenuation of
�30 dB at 4 kHz (see Results).

Behavioral assessment. Animals were placed on controlled water access
and trained to drink from a lick spout in the testing cage. Figure 1 illus-
trates the stimulus waveform and trial structure of the behavioral proce-
dure. All animals were trained to detect a 1 s, 5 Hz sinusoidal FM
embedded in a continuous 4 kHz tone carrier at 45 dB SPL (normal-
hearing controls) or 95 dB SPL (P10 CHL and adult CHL groups) to
compensate for the elevated thresholds. Task difficulty was adjusted by
controlling the maximum deviation of the modulation (FM depth) from
the carrier frequency (Fig. 1). The FM cue was followed by a mild aversive
stimulus (300 ms electrical shock) delivered via the metal lick spout
(Heffner and Heffner, 1995; Kelly et al., 2006; Sarro and Sanes, 2010;
Rosen et al., 2012). Within a few sessions, animals learned to avoid the
shock by breaking contact with the lick spout when they detected the FM

cue. Go (i.e., FM) and no go (i.e., no modulation) trials were scored by
determining whether the animal broke contact with the spout for at least
50 ms during the last 100 ms of the trial period (Fig. 1). Breaking contact
with the spout for �50 ms was scored as a hit on go trials and as a false
alarm on no go trials.

The first few sessions consisted of procedural training during which a
series of go trials consisting of 500 Hz FM depth were presented by the
experimenter until the gerbils responded correctly on at least 7 out of 10
consecutive go trials. Once this criterion was reached, we tested animals
on a range of at least 5 FM depths within each session, presented in
descending order from largest to smallest. An animal’s performance on
the previous session determined the range of depths on which it was
tested during the following session (i.e., always bracketing the previous
threshold). Three to 5 no go trials were delivered in between each go trial,
randomized to avoid temporal conditioning. Because animals display
between-subject variability in pain sensitivity (Mogil, 1999), we adjusted
the shock level for each animal to reliably produce withdrawal from the
spout, but not so great as to dissuade the animal from approaching the
spout on subsequent trials. The shock was turned off for the two hardest
FM depths being assessed in the series. Our logic was that animals per-
forming a near-threshold detection task could easily fail to detect the
conditioned stimulus. If so, the unconditioned stimulus would effec-
tively train animals to avoid the water spout entirely or adopt a strategy
that is associated with a high false alarm rate (e.g., pecking at the water
spout).

However, this paradigm could have differentially conditioned the an-
imals to respond only to the reinforced FM depths, but not unreinforced
depths (Wagner and Rescorla, 1972; LoLordo and Fairless, 1985). Al-
though there are many factors in our study that differ from standard
differential conditioning paradigms (e.g., the use of smaller FM depths
on successive days), we performed a control experiment to determine
whether the lack of negative reinforcement for all depths led to artificially
elevated FM thresholds. Five normal-hearing gerbils were run on the
paradigm described above, except the shock was delivered for all FM
depths. These animals displayed an average FM depth threshold of 94
(SD 33) Hz (log10Hz � 1.95, SD 0.13). This performance was signifi-
cantly poorer than that observed in normal hearing controls that did not
have reinforcement at the hardest FM depths.
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Figure 1. Overview of FM detection task. The target (a sinusoidally frequency modulated
tone) is embedded in a continuous 4 kHz carrier at a rate of 5 Hz. Task difficulty was modulated
by adjusting the maximum frequency deviation from 4 kHz (arrow, modulation depth). Exam-
ples of the fine structure for a pure and FM tone waveform are shown above the center fre-
quency plot. Trials, each lasting 1 s, were presented at a rate of �1/s while the animal was
drinking from the water spout. Three to five no go trials were delivered between each go trial.
Trials were suspended when animals broke contact with the spout for �50 ms. To determine
whether the animal detected the target, spout contact was monitored during the last 100 ms of
each trial (cross-hatched region) and scored as a “yes” response if they were off the spout for at
least 50 ms. A 300 ms aversive stimulus followed each go trial (black). Middle and bottom
images are shown on the same timescale; the temporal relationship of the fine structure exam-
ples in the top image are indicated by the gray background.
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Tone thresholds were determined using the
same behavioral procedure described for FM
threshold assessment. A 1 s tone (2.5 ms cos 2

onset/offset envelope) was used for the go trials
with silence during the no go and intertrial pe-
riods. Tone level was varied in 5 dB steps and
the animal’s threshold performance on the
previous session determined the range of levels
on which it was tested during the next session
(i.e., always bracketing the previous thresh-
old). Because we only tested tone thresholds
for three to five sessions, the session with the
best threshold was selected as the animal’s
threshold. Two of the control adults tested did
not perform a sufficient number of trials to
assess their tone thresholds and were removed
from the analysis of sensation level.

Experiment setup. Gerbils were placed in a
small cage within an acoustic isolation booth
and observed in a separate room via a closed
circuit monitor. The test cage contained a
stainless steel drinking spout and metal floor
plate that formed the terminals of a circuit
through which a mild aversive shock could be
delivered at the end of warning trials (Sarro
and Sanes, 2010). Spout contact was moni-
tored via a custom-built circuit that used a
940 nm infrared LED (LTE 302; Lite-On) and
photodiode (OP950; Optek Technology) con-
tained in custom housing (Techwell Solu-
tions). This circuit could also be used to deliver
a mild aversive shock at the end of warning
trials. Stimuli were digitally generated using a
real-time processor (RZ6; Tucker-Davis Tech-
nologies) and delivered via a single free-field
speaker (DX25TG05-04; Vifa) positioned 1 m
in front of the lick spout. The speaker was cal-
ibrated using a spectrum analyzer (Brüel and
Kjær) via a 1⁄4 inch free-field condenser microphone (Brüel and Kjær)
positioned 1 cm above the spout.

Data analysis. Percent yes (i.e., similar to percent correct except the no
go value is included) functions from sessions consisting of at least five
presentations of five different depths were fitted using the open-source
package psignifit. This package can fit several different psychometric
functions and allows the specification of prior probability distributions
for each parameter (e.g., guessing and lapsing rate). For this study, a
psychometric function representing a linear transform of stimulus inten-
sity values (i.e., the “mw0.1” core available in the bootstrap inference
algorithm) fitted by a right gumbel sigmoid produced a reasonable fit to
most of our data. The function is described as follows:

�� x; m, w, y, �� � � � �1 � � � ��

F � x; m, w�

where:

F� x; m, w� � exp� � exp� �
z��� � z�1 � ��

w
�x � m� � z�0.5���

and:

z��� � log ( � log(�)).

Here, x represents stimulus difficulty, m the midpoint, w the width of
the interval over which F (x; m, w) rises from � to 1 	 � (in psignifit’s
documentation, � is referred to as 	; however, we use � to differentiate it
from the 	 parameter of the beta prior described below), � is the lapse
rate, and � is the FA rate. Both m and w were unconstrained and � was
fixed at 0.1 (the default value set by psignifit). The prior distribution for
the FA rate, �, was specified as a beta distribution with the mode fixed at

the empirical FA rate for that session by setting the distribution param-
eters, 	 and 
, to NFA 
 1 and NCR 
 1. Following guidelines described in
Fründ, Haenel and Wichmann (2011), the prior for the lapsing rate, �,
was set to a mode of 0.05 (i.e., 	 � 1.5, 
 � 12). These prior distributions
allowed us to specify the most likely value for the guess rate based on our
empirical observations.

As illustrated in Figure 2A, fitted functions were transformed to a d�
metric, defined as Z(hit fraction) 	 Z(FA fraction), which normalizes
performance relative to the FA rate for a given session. Threshold was
defined as the FM depth at which performance reached a d� of 1. To
ensure that fits were of sufficient quality, we discarded fits in which the
deviance of the fit to the original dataset exceeded the 95 th percentile of
the deviance of the fit to 1000 simulated datasets (for details, see Fründ
et al., 2011).

Because animal behavior can be variable from session to session due to
various factors (e.g., motivation, attention, confidence in the task), we
considered several approaches to estimating the psychometric threshold
of each animal. One straightforward approach is to calculate the asymp-
totic threshold (e.g., the average of the last three sessions) regardless of
how well the animal was performing over these sessions. However, this
approach could give greater weight to poor performance that reflected
behavioral, rather than sensory, factors. An alternate approach is to select
the three sessions with the best FM depth thresholds after a specific
training period (markers in Fig. 2B). The average of the three best thresh-
olds were generally better than the average threshold over the final 3 d of
testing (data not shown), suggesting that some animals lost motivation in
the task toward the end of the experiment. Regardless of the approach for
selecting the three sessions to average, a single-factor ANOVA test re-
ports similar levels of significance when comparing the treatment groups
on the various parameters tested (e.g., FM depth threshold, FA rate, lapse
rate, psychometric slope, etc.). Because the choice of assessing psycho-
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Figure 2. FM depth detection thresholds were worse in animals with CHL. A, Example psychometric functions from a single test
session for a control (black) and P10 CHL (red) animal. FM depth threshold was estimated by fitting a psychometric function (solid
line) to the percent-correct data (individual points). The fitted psychometric function was transformed into sensitivity (d�) using
the fitted FA rate. Threshold was defined as the FM depth where d� � 1. The slope is indicated next to both curves. B, FM depth
threshold for each session for a representative control (black) and adult CHL animal (orange). The first session was devoted to test
cage habituation (dark gray), followed by several sessions of procedural learning (i.e., training at a single FM depth of 500 Hz, light
gray). Filled markers indicate the three best sessions. C, Average of the three best FM depth thresholds for each animal. Bars
indicate � SEM. The aged adult CHL group is plotted separately (diamond marker). In all other panels and figures, the aged adult
CHL group was combined with the adult CHL group. D, Average FM depth threshold for each group. Bars indicate � SEM.
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metric threshold did not affect the final outcome—that is, the statistical
significance of between-group differences—subsequent analysis focuses
on the three best sessions from each animal.

Statistical tests were first performed to determine whether the depen-
dent variable was normally distributed for each treatment group (con-
trol, adult CHL, P10 CHL), using a Shapiro–Wilk normality test.
Although there were only five departures from normality out of 21 com-
binations (slope of psychometric function and FA rate for adult CHL
animals, p 
 0.0001 and p � 0.0006, respectively; sensation level for P10
CHL, p � 0.02; slope of psychometric function and lapsing rate for
control adults, p � 0.02 and p � 0.03, respectively), we used Levene’s test
for equal variance (using the median value as an estimate of each group’s
center) because it is more robust when samples deviate from a normal
distribution. Of all of the dependent variables tested, only 2 had unequal
variance (FM thresholds, df � 2, F-value � 8.99, p � 0.0004; slope of
psychometric function, df � 2, F-value � 7.74, p � 0.001). For all
multiple-comparison tests, we used the nonparametric Kruskal–Wallis
test followed by pairwise comparisons using a two-sided Wilcoxon test
with Holm-corrected p-values.

The statistical significance of the correlation, �, between variables was
assessed by randomly shuffling the original dataset and computing the
correlation statistic on this shuffled set. This process was repeated at least
10,000 times to generate a reference distribution, �*, and the two-sided
p-value was computed as the fraction of the distribution that exceeded
the actual statistic as follows:

�n�1000
��*� � ���

n

Results
CHL impairs detection of frequency modulation
To evaluate the FM detection thresholds as a function of hearing
status, psychometric functions were obtained from three groups
of adult gerbils (see Materials and Methods): adults with normal-
hearing (n � 16), adults raised with CHL induced at P10 (n �
17), and adults with CHL induced at P83 (n � 23). On average,
normal-hearing adult gerbils displayed FM depth thresholds of
25 (SD 16) Hz (log10Hz � 1.31, SD 0.27). This value suggests that
FM detection is superior to chinchillas (�100 Hz; Long and
Clark, 1984) and close to normal-hearing humans (�10 Hz;
Shower and Biddulph, 1931; �20 Hz; Sek, 1994).

In contrast to controls, both adult CHL and P10 CHL animals
displayed poorer detection thresholds of 64 (SD 15) Hz
(log10Hz � 1.80, SD 0.10) and 89 (SD 27) Hz (log10Hz � 1.93, SD
0.14), respectively. There was a large range of FM thresholds with
a degree of overlap between groups (Fig. 2C). The best adult CHL
animals displayed performance on par with that of the worst
normal-hearing controls. Likewise, the best half of the P10 CHL
animals had performance comparable to the worst half of the
adult CHL group. To test for significance, FM depth thresholds
were converted to log10 values because this is the likely decision
variable for frequency discrimination (Demany and Semal, 1989;
Moore and Sek, 1996). A Kruskal–Wallis test reported a main
effect of group (� 2 � 34.5, df � 2, p 
 0.0001). A Wilcoxon test
using Holm-corrected p-values demonstrated significant differ-
ences between each group pair (control vs adult CHL: df � 1, p 

0.0001; control vs P10 CHL: df � 1, p 
 0.0001; P10 CHL vs adult
CHL: df � 1, p � 0.0008). Therefore, CHL impairs performance
regardless of age of onset, but the impairment is greater when
hearing loss is induced during early development (Fig. 2D).

To determine whether CHL resulted in a general decrease in
sensitivity to differences in stimulus magnitude, the slope of the
psychometric function at d� � 1 was measured for the three best
sessions. As shown in Figure 3, the average psychometric func-
tion slope was shallower in animals with CHL whether induced at

P10 or in adulthood. A Kruskal–Wallis test reported a main effect
of group (� 2 � 25.6, df � 2, p 
 0.0001). A Wilcoxon test using
Holm-corrected p-values was performed on group pairs and
demonstrated significant differences between each (control vs
adult CHL: df � 1, p 
 0.0001; control vs P10 CHL: df � 1, p 

0.0001; P10 CHL vs adult CHL: df � 1, p � 0.03). In addition, there
was a strong negative correlation between FM detection threshold
and slope (Spearman’s rank correlation, ��	0.79; permutation
test, p 
 0.0001). This result suggests that normal hearing animals
could discriminate smaller stimulus differences (i.e., steep slope)
compared with CHL animals (i.e., very shallow slope).

Poorer FM detection is not explained by sensation level or
task performance
Human psychophysical data suggest that FM detection improves
with increasing sensation level (i.e., loudness of the signal relative
to the subject’s threshold). To investigate whether this could ex-
plain the impaired performance in CHL animals, we assessed 4
kHz tone behavioral thresholds after completion of the FM de-
tection testing in all but six normal-hearing adults to determine
the sensation level at which each animal performed the FM de-
tection task. The absolute thresholds for the three groups were
28.2 (SD 12.2) dB SPL for controls, 59.4 (SD 11.2) dB SPL for P10
CHL animals, and 56.3 (SD 10.2) dB SPL for adult CHL animals.
This demonstrates that the CHL procedure introduces a 30 dB
hearing loss regardless of age of onset and translates to an average
sensation level of 19.9 (SD 7.1) dB for control adults, 33.4 (SD
12.7) dB for P10 CHL, and 36.4 (SD 11.6) dB for adult CHL
animals (Fig. 4A). A Kruskal–Wallis test reported a significant
effect of group (� 2 � 12.0, df � 2, p � 0.002). However, a post hoc
Wilcoxon test using Holm-corrected p-values revealed no signif-
icant difference between P10 and adult CHL animals (p � 0.48),
indicating that CHL induced a similar level of attenuation in both
groups. In contrast, the control adults were run at a lower sensa-
tion level relative to both the P10 (p � 0.03) and adult CHL (p �
0.001) groups. This indicates that, if anything, the CHL animals
had an advantage in terms of sound level and that sensation level
was not a factor that could explain the impaired performance.
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If CHL animals performed poorly on
FM detection regardless of stimulus diffi-
culty, then the elevated thresholds could
reflect a general cognitive problem in per-
forming the behavioral task. To investi-
gate whether the within-group variance
and cross-group differences could be ex-
plained by poor task performance, we ex-
amined four performance metrics: false
alarm rate, lapsing rate (i.e., miss on easy
trials), sensitivity at the easiest FM depth,
and reaction time. The results of these
analyses suggest that there were no sys-
tematic between-group differences in
performance that could explain the differ-
ences in FM detection thresholds.

FA rate (the probability of an incorrect
response when the signal is not presented)
is influenced in part by the animal’s deci-
sion process (i.e., the criterion or thresh-
old above which they will produce a “yes”
response). This decision process, in turn,
is influenced by various factors, including
the shock level and task difficulty. There-
fore, systematic differences in FA rate be-
tween groups may suggest that we failed to
treat these groups equally in adjusting the
aversive stimulus or selecting the appro-
priate sequence of values to test them on
each day. With the exception of one ani-
mal, the majority of CHL animals had FA rates comparable to
those of the control adult group (Fig. 4B). In fact, the animals
with the highest and lowest FM thresholds had the lowest FA rates
(data not shown) and there was no correlation between FM
threshold and FA rate (permutation test using Spearman’s rank-
order, p � 0.71). A Kruskal–Wallis test reported no effect of
group (� 2 � 1.8, df � 2, p � 0.41). Therefore, it is unlikely that
dissimilarities in the testing procedure could explain the group
differences in FM detection threshold.

Lapsing rate (the probability of an incorrect response inde-
pendent of stimulus intensity) has been used as a proxy for atten-
tion. This rate reflects the upper asymptote of the psychometric
function, placing an upper bound (1-lapsing rate) on the maxi-
mum fraction correct the animal can be expected to achieve re-
gardless of stimulus intensity. Inattentive animals would tend to
miss particularly easy FM depths, resulting in a higher lapsing
rate. Here, performance on the easiest FM depth in each session
was used as a means of estimating lapsing rate. There was no
systematic relationship between lapsing rate and FM thresholds
(permutation test using Spearman’s rank-order, p � 0.21), nor
was there a significant difference between groups (Fig. 4C;
Kruskal-Wallis, � 2 � 4.8, df � 2, p � 0.09). Post hoc pairwise
comparisons revealed no significant differences between groups.
A related measure of performance is sensitivity (d�) at asymptotic
performance. Although there was no systematic relationship be-
tween d� at the easiest stimulus depth and FM thresholds (per-
mutation test using Spearman’s rank-order, p � 0.69), there was
a modest difference between group (Kruskal–Wallis, �2 � 5.9, df � 2,
p � 0.05), with CHL groups displaying slightly better asymptotic
sensitivity (Fig. 4D). Post hoc pairwise comparisons revealed no
significant differences between groups. We also investigated the
estimate of lapsing rate and d� at asymptotic performance using our
fitteddataandfoundnosignificantbetween-groupdifferences(Kruskal–

Wallis) or systematic relationship between lapsing rate and FM thresh-
olds (permutation test using Spearman’s rank-order).

Reaction time has been associated with task difficulty, sus-
tained attention or vigilance, and the speed-accuracy trade-off
(Cattell, 1886; Saltzman and Garner, 1948; Buck, 1966; Luce and
Green, 1972; Teichner and Krebs, 1972; Weissberg et al., 1990;
Salthouse and Hedden, 2002). Although the meaning of reaction
time with respect to the behavioral procedure is subject to inter-
pretation, it was used as a quantitative measure of performance to
further establish the lack of behavioral differences between the
groups. The probability of spout contact was calculated as a func-
tion of trial duration for all “hit” responses near each animal’s FM
detection threshold. Because animals typically do not return to
the spout until after the trial is over, this measure can be inter-
preted as the cumulative distribution function of reaction time
(e.g., the cumulative probability that the animal will have re-
sponded by a certain point in time). Steeper slopes indicate that
the animal has a tendency to respond around a certain point in
time, whereas slopes closer to unity indicate that reaction times
are uniformly distributed throughout the trial. As shown in Fig-
ure 5A, there were no group differences in the probably of spout
contact during threshold go trials. Similarly, there were no group
differences for miss trials (Fig. 5A). For all groups, the probability
of being off the spout on threshold go trials increased by 0.1 for
every 100 ms increment of stimulus after the first 300 ms.

To obtain a single reaction time value for each animal, we
measured the average time at which the animal first leaves the
spout on go trials that were scored as a “hit,” even if the animal
returned briefly to the spout later in the trial (this eventuality is
illustrated in Fig. 5A for the hit trials; there is a marginal increase
in probability of being on the spout after 950 ms). As shown in
Figure 5B, the mean reaction time for suprathreshold values is
�515 ms across all treatment groups with no significant group
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differences (Kruskal–Wallis, � 2 � 1.76, df � 2, p � 0.41) and
is not correlated with FM threshold (permutation test using
Spearman’s rank-order, p � 0.44). The consistent between-
group performance on these four metrics indicates that the ani-
mals in each treatment group performed the FM detection task in
a nearly identical manner.

Discussion
The neural consequences of altered sensory experience are most
profound during development, often referred to as sensitive
periods. For example, when cochlear prostheses are implanted in
deaf subjects during the first 18 postnatal months, they achieve
better cortical activation compared with subjects implanted at a
later age (Ponton and Eggermont, 2001; Sharma et al., 2002; Kral
and Sharma, 2012). These neurophysiological outcomes are con-
sistent with behavioral data that demonstrate better speech pro-
duction and language acquisition in subjects who receive
implants at a younger age (Svirsky et al., 2004; Niparko et al.,
2010). Similarly, clinical studies on visual deprivation (e.g., cata-
racts) suggest the existence of multiple sensitive periods (Lewis
and Maurer, 2005; Scheiman et al., 2005).

Despite firm evidence for sensitive periods, hearing loss-
induced changes to central auditory function are also well docu-
mented in adulthood, especially during senescence (Syka, 2002,
2010; Chisolm et al., 2003; Caspary et al., 2008; Turner et al.,
2013). Regardless of age of onset, both short- and long-term au-
ditory deprivation are associated with measurable changes in sen-
sory and cognitive function (Moore et al., 1996; Formby et al.,
2003; Munro and Blount, 2009; Lin et al., 2011; Seldran et al.,
2011; Humes et al., 2012). Similarly, environmental manipula-
tions that provide supplemental sound exposure suggest that
some forms of plasticity are present in adulthood (Pienkowski
and Eggermont, 2011). Therefore, this study was designed to
determine whether an auditory percept, FM detection, was af-
fected by the same CHL manipulation induced either before neu-
ral and behavioral properties are mature (P10, ear canal opening)
or after they reach an adult state (P83). The results demonstrate
that CHL induced at either age leads to poorer FM detection.
However, the effect was larger when CHL was induced during
early development.

Age-dependent effect of hearing
loss onset
If the neural properties that are impaired
by hearing loss during a sensitive period
are causally related to auditory percep-
tion, then juvenile onset hearing loss
would have a greater impact on percep-
tion than the same manipulation com-
mencing in adulthood. To test this idea,
we induced CHL via bilateral malleus re-
moval. This form of CHL raises air
conduction thresholds, but not bone con-
duction thresholds, indicating that there
is no damage to the cochlea (Tucci et al.,
1999). This minimized the potential con-
tribution of cochlear processing deficits
(Oxenham and Bacon, 2003). In fact, chil-
dren with chronic otitis media often expe-
rience transient hearing loss without
damage to the cochlea and this depriva-
tion is thought to impair neural and
perceptual development (Whitton and
Polley, 2011). Furthermore, unilateral
CHL during development can impair bin-

aural processing and speech detection in noise (Clements and
Kelly, 1978; Knudsen et al., 1984a, 1984b; Moore et al., 1999;
Parsons et al., 1999; King et al., 2000). Longer durations of uni-
lateral CHL, due to the congenital absence of an ear canal, are
associated with a poorer ability to understand speech in the pres-
ence of noise after corrective surgery, suggesting termination of
the sensitive period for recovery (Gray et al., 2009).

Given an equivalent elevation of hearing thresholds, the ani-
mals that experienced CHL from the age of ear canal opening
displayed poorer FM detection relative to animals that experi-
enced CHL beginning in adulthood (Figs. 2, 3). Because measures
of audibility and proxies for nonsensory factors showed no dif-
ference between the CHL groups, these results indicate that the
developing nervous system is more vulnerable to the manipula-
tion. However, the noteworthy finding is that adult onset hearing
loss led to a significant impairment of FM detection. This
result is consistent with a human study in which a similar
carrier and modulation frequency were tested, yielding FM
detection thresholds 
16 Hz for control subjects and �90 Hz
for elderly subjects with moderate hearing loss (Moore and
Skrodzka, 2002). These results imply that the neural proper-
ties used to define a sensitive period are not exclusive corre-
lates for a specific perceptual deficit.

Alternative explanations for the effect of CHL
One explanation for the results could be that the signals were not
sufficiently audible to animals with CHL. However, 4 kHz behav-
ioral thresholds did not differ between CHL groups and stimuli
were usually delivered at a higher sensation level for CHL animal
(Fig. 4A). It is also possible that nonsensory factors such as atten-
tion contributed to the poorer FM detection thresholds displayed
by CHL animals. Asymptotic performance is used as an indirect
measure of attention in children (Bargones et al., 1995), false
alarm rate has been used as a proxy for sustained attention (Lin et
al., 1999; Kanaka et al., 2008), and reaction time is associated with
accuracy and task difficulty (Cattell, 1886; Saltzman and Garner,
1948; Buck, 1966; Luce and Green, 1972; Teichner and Krebs,
1972; Weissberg et al., 1990; Salthouse and Hedden, 2002). To the
extent that these measures assess nonsensory factors, there was
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no indication of a difference between the control and CHL
groups (Figs. 4, 5).

The duration of hearing loss is a key variable often correlated
with the age of onset and may confound interpretation of the
effect of age of onset. For prelingually deafened humans who
receive a cochlear prosthesis, a longer duration of auditory depri-
vation is associated with poorer auditory perceptual skills, in-
cluding speech comprehension (Tong et al., 1988; Busby et al.,
1992, 1993; Schramm et al., 2002; Svirsky et al., 2004; McConkey
Robbins et al., 2004; Niparko et al., 2010). A similar outcome has
been reported for postlingually deafened cochlear implant listen-
ers (Gantz et al., 1993; Blamey et al., 1996; Rubinstein et al.,
1999). In apparent contrast, hearing loss at an earlier age and/or
for a longer duration is associated with better speech recognition
for a group of 20 subjects with severely elevated high-frequency
thresholds (Seldran et al., 2011). Because most human subjects re-
ceive remediation of some sort (e.g., auditory prostheses, speech
therapy), it is difficult to determine the influence of learning or
acclimatization-driven neural plasticity mechanisms (Turner et al.,
1996). Here, we demonstrate that juvenile-onset CHL impairs FM
detection, even when compared with adult-onset CHL animals that
are matched for duration of sensory deprivation.

Finally, it is possible that animals attended to small amplitude
modulation (AM) in the stimulus. Using the speaker calibration,
we calculated the maximum level change that would be expected
for the average FM depth detection threshold values of each
group, and compared this with published AM detection thresh-
olds. For controls (25 Hz), the stimulus contained a 1.4 dB level
change. This is smaller than the adult AM detection threshold
(3.4 dB) calculated from Rosen et al. (2012), suggesting that con-
trols did not use an AM cue. For P10 CHLs (89 Hz), the stimulus
contained a 6.2 dB level change. This is larger than the P10 CHL
AM detection threshold (4.5 dB) calculated from Rosen et al.
(2012), suggesting that P10 CHLs could have used an AM cue. If
CHL animals did exploit the intensity cues to assist in detect-
ing the FM tone, then they may have even poorer FM depth
thresholds than reported here. However, P10 CHL animals
had access to the same acoustic information as the adult CHL
animals, yet displayed a deficit in perception relative to adult
CHL that cannot be attributed to non-sensory factors. When
compared to normal-hearing adults, it remains possible that
both CHL groups used sound level information to augment
their FM detection performance.

Relationship to neural consequences of conductive
hearing loss
By several measures, the effect of CHL on the CNS depends on
age of onset. Bilateral CHL has a smaller affect on 2-deoxyglucose
uptake, a measure of metabolic activity, when it is induced in
adult compared with P21 or younger gerbils (Tucci et al., 1999).
Similarly, unilateral CHL has a smaller affect on neural activity, as
assessed by Mn 2
-enhanced magnetic resonance imaging, when
induced at P21 compared with P10 mice (Yu et al., 2005). How-
ever, unilateral CHL can produce both age-dependent and age-
independent effects in auditory cortex. Tonotopy is affected
when CHL begins before P28, responses from the unmanipulated
ear are augmented when CHL begins at P28, and responses from
the manipulated ear are suppressed even when CHL begins in
adulthood (Popescu and Polley, 2010). Furthermore, depending
on the auditory processing metric under study, the effects due to
hearing loss can display quite specific critical periods (Polley et
al., 2013). It has been suggested that heightened sensitivity of the
developing system to hearing loss is due to an extended period

during which synapse formation and elimination is occurring in
auditory cortex (Kral and Sharma, 2012). These neural findings
are consistent with our result of poorer FM detection thresholds
in both age groups, with a greater effect for animals with juvenile-
onset CHL (Fig. 2).

The large perceptual effect of adult CHL cannot be explained
entirely by the cellular changes that occur following early onset
CHL (Xu et al., 2007, 2010; Takesian et al., 2010). For example,
CHL leads to a reduction in the strength of cortical inhibition
when induced at P10, but not at P83 (Takesian et al., 2012). In
contrast, the weaker inhibition that accompanies adult onset
hearing loss may involve changes to GABA content and release
(Bledsoe et al., 1995; Ling et al., 2005; Caspary et al., 2008). There-
fore, our findings can serve to distinguish neural properties that
display an early sensitive period and are more likely to differen-
tiate the effects of juvenile hearing loss from those that are not
sensitive to age of deprivation, and may explain the perceptual
effect of adult-onset CHL.
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